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Abstract Change point detectors (CPDs) are used to seg-

ment recordings of single molecules for the purpose of

kinetic analysis. The assessment of the accuracy of CPD

algorithms has usually been based on testing them with

simulated data. However, there have not been methods to

assess the output of CPDs from real data independent of

simulation. Here we present one method to do this based on

the assumption that the elementary kinetic unit is a stationary

period (SP) with a normal distribution of samples, separated

from other SPs by change points (CPs). Statistical metrics of

normality can then be used to assess SPs detected by a CPD

algorithm (detected SPs, DSPs). Two statistics in particular

were found to be useful, the z-transformed skew (SZ) and

z-transformed kurtosis (KZ). KZ(SZ) plots of DSP from noise,

simulated data and single ion channel recordings showed

that DSPs with false negative CP could be distinguished.

Also they showed that filtering had a significant effect on the

normality of data and so filtering should be taken into

account when calculating statistics. This method should be

useful for analyzing single molecule recordings where there

is no simple model for the data.

Keywords Central moment � Change point detection �
Kurtosis � Single molecule � Skewness

Introduction

Time series of single molecules are often characterized by

near instantaneous changes intervening between periods of

apparent stability. Examples include currents through ion

channels, fluorescence intermittence in photosynthetic

complexes and quantum dots, atomic force measurements

of proteins, single molecule fluorescence resonance energy

transfer and molecular dynamics simulations. This behav-

ior can be interpreted as the switching of the molecule

between stable conformations (Fig. 1). Thus, the sine qua

non of the kinetic and thermodynamic analysis of the

molecule is the accurate determination of change points

(CPs) and as a corollary the stable (or stationary) periods

(SPs). To this end there are a large number of change point

detection (CPD) algorithms. These algorithms usually

perform a simple mathematical operation on the series to

produce a change point signal, which indicates the likely

presence of a CP. This operation can be the derivative or

some local (window) statistic. The CP signal can then be

thresholded to segment the series into detected CPs and

SPs, DCPs and DSPs respectively (Fig. 1).

The application of CPDs usually falls between two

philosophical posts. At one end the series appears to con-

form to some simple model, for instance there are only two

amplitude levels at which SPs occur, corresponding to (at

least) two conformational states. The object of CPD is

simply to automate the fitting of this data according to the

model and only a short section of the fitted series has to be

visually inspected to judge how good this fit is. At the other

end there may be no simple model for the data or if there is,

there may be factors limiting the effectiveness of the CPD

such as short, bandwidth limited events. In these cases

assessment has been made with simulated time series. CPs

and SPs are generated, either purely randomly or based on

some kinetic model, and to this is added Gaussian dis-

tributed noise. Assessment has often been limited to a

visual comparison of the fit of the DSPs and DCPs with the

unnoised simulation. However, a more quantitative

approach has been taken by several authors, for instance
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counting the number of false-positive and false-negative

DCPs; the accuracy of DSP amplitudes; or with kinetic

models, the accuracy of the kinetic data derived from the

DSPs (Carter et al. 2008; Riessner et al. 2002). Either way,

once a CPD has been tested with simulated data, its

application to real data is then a matter of trust. If it works

okay with simulated data, and is perhaps found to be the

best CPD with such data, then it can only be applied

blindly to the real data—its output must be taken on trust as

a whole or not at all. But no CPD is perfect, they will all

produce false-negatives and false-positives, and there has

been no method of testing for these with real data. Here we

present one such method.

Two assumptions made with single molecule data are,

first, that the SPs are in fact stationary in the strict sense—

that is, the distribution of amplitudes does not change with

time during the SP; and second, that this distribution is

Gaussian (normal), reflecting contamination of the actual

SP amplitude by instrumental and environmental noise. It

would seem, then, that a simple way of assessing the output

of CPDs is to look at the statistics of DSPs, specifically

statistics that measure how much the DSP approximates a

normal distribution. This is the basic idea of our method.

Methods

Sources of Noise

Noise was recorded from an inside-out patch without channel

activity. The patch clamp electrophysiology set up consisting

of an CV201A headstage, Axopatch 200A amplifier and

1322A Digidata (all Molecular Devices, Sunnyvale, CA).

The recording was made at 10 kHz sampling frequency with

the amplifier’s low pass Bessel filter cutoff set to 5 kHz.

White noise with a standard normal distribution (mean of

zero, standard deviation of one) was generated in silico by the

Mersenne Twister random number generator available in the

GNU Scientific Library (GSL) for C??.

Monte Carlo Estimation of Noise Statistics

Noise time-series were generated as described above. DSPs

(Fig. 1) of random length were taken randomly from the

series. As length (L) was typically plotted on a log axis, we

wanted log L to be uniformly distributed between a mini-

mum and maximum value (logs of Lmin and Lmax). The

probability density function for this is

DSP(f+, f-)DSP(f-) DSP(t) DSP(f+ )

idealized
record

actual record
(molecular noise,

environmental noise,
instrument response)

CPD signal

CPD segmentation

= DSP

= DCP

SP CP

threshold

CP(f-) CP(f-)DCP(f+ )DCP(t) DCP(t)

A

B

C

D

Fig. 1 The idealized single molecule and change point detection

(CPD). a The signal from the idealized single molecule consists of

periods where the amplitude does not change, stationary periods

(SPs), separated by instantaneous changes in amplitude, change points

(CPs). During each SP the molecule is in a particular conformational

state and at a CP the molecule switches from one state to another. b In

any conformational state the molecule will not be completely

motionless, so there will be some ‘‘molecular noise’’ in the recorded

signal. Of course there is (or can be) a thermodynamic continuum

between ‘‘molecular noise’’ and ‘‘conformational state change,’’ but

in our idealization we make a dichotomy. This molecular noise,

together with environmental and instrument noise and the properties

of the recording apparatus (its impulse response), add to the effect of

giving a less than ideal recorded signal. However, the noise during an

SP, its amplitude distribution, should be unchanging during an SP and

therefore the SP is stationary in the strictly mathematical definition of

stationary. c Most CPD algorithms perform a simple linear mathe-

matical operation on the recording to produce a CPD signal, the

amplitude of which should (we hope) increase at a CP. d It is then

simply a matter of thresholding the CPD signal to segment the

recording into detected CPs and detected SPs (DCPs and DSPs,

respectively). Of course with all the noise in the recorded signal, no

CPD is going to be perfect in its matching of DSP to SP, DCP to CP.

A DSP may overlap an undetected CP; such a DSP is tagged as false

negative, f-, because the false-negative detection of the CP. One of

the two DCPs bordering a DSP may not coincide with a CP—as such

one of those DCPs must be falsely positive, and so the DSP is tagged

f?. If a DSP does not overlap any CP and neither of its bordering

DCPs is falsely positive than the DSP is regarded as true and is

tagged t

408 S. P. Parsons and J. D. Huizinga: Assessment of Change Point Detectors

123



PðxÞ ¼ 1=ðxmax � xminÞ xmin\x\xmax

0 otherwise

�

x ¼ log L; xmin ¼ log Lmin; xmax ¼ log Lmax

Thus, the cumulative density function is

CðxÞ ¼
Zx

�1

PðxÞdx ¼ u

¼
0 x\xmin

ðx� xminÞ=ðxmax � xminÞ xmin\x\xmax

1 x [ xmax

8<
:

and so the inverse cumulative density function is

C�1ðuÞ ¼ x ¼
�1 u\0

uðxmax � xminÞ þ xmin 0\u\1

þ1 u [ 1

8<
:

Thus, values of L were calculated as

L ¼ 10x ¼ 10C�1ðuÞ ¼ LminðLmax=LminÞu

where u was a uniformly distributed pseudo random number

between 0 and 1 (generated by the GSL Mersenne Twister

generator). Similar derivations have been made for loga-

rithmic binning of dwell times (Sansom et al. 1989; Sig-

worth and Sine 1987). DSPs were taken at random points in

the series using uniformly distributed pseudo random

numbers (again using the Mersenne Twister routine).

Random SP Simulation

Noise time-series were generated as described above. To these

series, SPs were added with random lengths and amplitudes and

in random sequence. Lengths were determined as above.

Amplitudes were determined from uniformly distributed pseudo

random numbers generated by the GSL Mersenne Twister

routine. The series were then digitally filtered with a low pass,

eighth-order Bessel at 3 kHz cutoff (the series being ‘‘sampled’’

at 10 kHz) to simulate some filtering by the amplifier (or other

recording device) and then at 250 Hz cutoff before CPD.

Statistical Measures

Statistical measures of normality are often based on the

third and fourth order standardized central moments—skew

and kurtosis, respectively. For a DSP (Fig. 1) consisting of

the data samples {x1, x2, x3,…xN},

S ¼ c3 K ¼ c4

cp ¼ lp=l
p=2
2

lp ¼
1

N

XN

i

xi � �xð Þp

where S is the skew (or skewness); K is the kurtosis; cp is

the standardized pth order central moment; lp is the pth

order central moment and; �x is the DSP mean. Moments

were calculated with the single-pass online method of Pe-

bay (2008). K has the value of three for a normal distri-

bution. The excess kurtosis (KE) is defined as K-3.

If several DSPs are taken from normally distributed

data, then the values of S and K of these DSPs will be

distributed nonnormally (Pearson 1931). However, trans-

formations can be made to S and K so that the trans-

formed values have a standard normal distribution (mean

of zero, variance of one). Such transformed values are

often written as Z(X) where X is the untransformed var-

iable, the Z (or z) distribution being another name for the

standard normal distribution. However, for simplicity of

describing functions involving Z(X), we use XZ instead.

For the Z transforms of S and K we used the equations

given by D’Agostino et al. (1990). These are quite

lengthy, so we will not repeat them here. (See Eqs. 8–13

of D’Agostino et al. for the transform of skew, and

Eqs. 14–19 for the transform of kurtosis.) Note that in

their article, S and K are given by their rather dated terms,ffiffiffiffiffi
b1

p
and b2, respectively.

Skew or kurtosis can be used alone to measure the

normality of a distribution. However, there are two mea-

sures that combine them: the Jarque–Bera statistic (Jarque

and Bera 1987) and the D’Agostino–Pearson omnibus

statistic, or K2 test (D’Agostino et al. 1990).

J ¼ N

6
S2 þ K2

E

4

� �

A ¼ S2
Z þ K2

Z

where J is the Jarque–Bera statistic and; A is D’Agostino–

Pearson omnibus statistic.

Change Point Detectors

Infinitely Good

This CPD works with simulated data. The idealized (un-

noised) record is provided to the CPD and it uses this to

detect all CPs.

Finitely Bad

Again this CPD works with simulated data. The idealized

(unnoised) record is provided but, unlike the infinitely good

CPD, only every nth CP is detected, where n is a random

number between one and four picked for each DSP.
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Derivative

Signal derivative has been used as a CPD for a number of

single molecule studies (Carter et al. 2008; Tyerman et al.

1992; VanDongen 1996). By plotting the derivative against

amplitude it can be used as a graphical method for sum-

marizing levels (Tyerman et al. 1992), similar to mean–

variance plots (see below). Signal derivative was calculated

by the method of Savitzky and Golay (1964) (Steinier et al.

1972). The signal is convolved with a centered window, the

coefficients of which are calculated as

A ¼ ½ai;j�i¼0...2h;j¼0...d

ai;j ¼ i� hð Þ j

B ¼ ½bi;j�i¼0...d; j¼0...2h ¼ ATA
� ��1

AT

w ¼ b1;�

where h is the half width of the convolution window; d is

the degree of the polynomial (the convolution is really the

fit of a polynomial) and; w is the vector (window) of

coefficients. The absolute value of the signal derivative

constitutes the CPD signal (Fig. 1) and is thresholded to

detect CPs.

Welch’s t-Statistic

Welch’s t-test is a form of Student’s t-test applicable where

the two samples to be compared may not have the same

variance. It has been employed by a number of authors for

CPD (Carter et al. 2008; Moghaddamjoo 1988; Past-

ushenko and Schindler 1997). In Moghaddamjoo (1988), it

is given as the F test. Where the size of the two samples are

equal the F statistic and Welch’s t-statistic are equivalent

with F = t2. A window is passed across the series such

that,

t ¼ m1 � m2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð V1 þ V2ð Þ=w

p

m ¼ ðw� 1Þ V1 þ V2ð Þ2

V2
1 þ V2

2

p ¼ 1� Bt= t2þtð Þ
t
2
;
1

2

� �

where w is the width of the window in samples; m1 and m2

are the means of the first and last half of the window; V1

and V2 are the variances of the first and last half of the

window; t is Welch’s t-statistic; m is the number of degrees

of freedom; Bx(a, b) is the normalized incomplete beta

function; and 1-p is the probability that a CP has not

occurred (that the distribution of the first and last half of the

window are the same). t or p can constitute the CPD signal.

Cochrane’s Statistic

Variance alone can be used as a simple CPD signal. Also if

window variance is plotted against window mean (mean–

variance plot), a step increase in amplitude will describe an

inverted parabola. The form of this parabola can be derived

from first principles and so can be useful for quantitative

analysis as well as qualitative assessment of levels (Patlak

1988, 1993; Thompson et al. 2002; Traynelis and Jaramillo

1998). Window variance can also be transformed to a

probability that it is sampled from a population with a

defined variance (in this context, the noise variance). This is

based on the theory of Cochrane (Cochrane 1934, 1954). It

is sometimes known as the v2 test for variance, but we use

Cochrane’s test for better distinction from other v2 tests

(similar to using Welch’s t-test rather than just t-test). As far

as we aware it has only been used in one CPD study

(Riessner et al. 2002). A window is passed across the series

such that,

p ¼ 1� Q
w

2
;
Vðw� 1Þ

r2

� �

where w is the width of the window in samples; V is the

window variance; r2 is the population (noise) variance;

Q(a, b) is the normalized incomplete gamma function and;

1-p is the probability that a CP has not occurred (the

probability that the window is sampled from a population

with variance of r2).

Ion Channel Data

Maxi channels were recorded from in situ preparations of

mouse small intestine as described previously (Parsons et al.

2012). The recordings were made at 10 kHz sampling fre-

quency with the amplifier’s low pass Bessel filter cutoff set

to 5 kHz. All procedures were carried out in accordance

with regulations from the Animal Ethics Board of McMaster

University.

Results

Statistics of Noise

The assumption of models of single molecule data, and the

basis of our idea for CPD assessment, is that each SP has a

normal sample distribution. Put another way, a time series

that is free of CPs should be normally distributed. Our first

aim was to test this. Time series of pure noise were generated

from two sources—an inside–out patch without any channel

activity and a computer pseudo-random number generator

set to generate white noise with a standard normal distribu-

tion. In some cases the series were low pass filtered at a
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250 Hz cutoff as such filtering is an inevitable part of the

recording and analysis of real single molecule data (of course

the patch noise was already filtered to some extent by the

recording system). Segments of random length, representing

DSPs, were then sampled randomly and their statistical

properties calculated. These were plotted as a function of

DSP length (Fig. 2), as we wanted to get some statistical

measure of normality that was invariant with length.

Two statistics are commonly used to assess normality:

skew (S) and kurtosis (K). If we have a bell-shaped dis-

tribution, not necessarily normal by mathematical defini-

tion but of a similar shape to the undiscerning eye, then we

might describe that bell in terms of its central bulge and

two tails either side of this bulge. In these terms S is a

measure of the symmetry of the bell, the relative size of the

tails or any lean in the bulge, with an S of zero typically

indicating perfect symmetry. A normal distribution has an

S of zero. K is a measure of the size of the tails relative to

the bulge, K getting larger the tails or tail get. A normal

distribution has an K of three. Therefore, K-3, the ‘‘excess

kurtosis’’ (KE), is often used for convenience.

The distribution of S as a function of DSP length, S(L),

was similar for both filtered and unfiltered, computer

generated or patch generated, noise. The scatter of

S decreased with L and was slightly greater with filtered

than unfiltered data (Fig. 2). For unfiltered noise, both

computer or patch generated, KE(L) was similarly distrib-

uted to S(L). However, filtering of both noise series caused

a marked asymmetric shift to negative KE. The change in

scatter (variance) of S and K with L would be a major

impediment to using either quantity as a universal measure

of normality—i.e., a single threshold of S or K could not be

applied to DSPs of all lengths. However, there are formulas

that, taking account of the number of samples (i.e., L), will

log L (s) log L (s) log L (s) log L (s)

log L (s) log L (s) log L (s) log L (s)

log L (s) log L (s) log L (s) log L (s)

SS Z

SS Z

K
E

K
Z

K
Z

lo
g 

l

J

og
A

BA
K

E
lo

g 
J

lo
g

A

Fig. 2 Monte Carlo estimation of noise statistics. One thousand

segments of random length were picked at random from a series of

either a in silico simulated standard normal white noise or b noise

recorded from an inside–out patch without ion channel activity

(10 kHz sampling frequency, 5 kHz amplifier low pass). Scatter plots

of segment statistic as a function of segment length (L). Gray points
unfiltered series; Black points series digitally filtered with an eighth-

order Bessel low pass with 250 Hz cutoff
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transform a statistic such that it has a standard normal

distribution (mean of zero and variance of one), irrespec-

tive of that number. As z (or Z) is another name for the

standard normal distribution, these transforms are often

called z-transforms and the transformed statistics, z-sta-

tistics. Equations have been given for z-transformation of

both S and K. In our hands they seemed to work well. The

scatter of both z-transformed S and K, SZ and KZ, did not

vary with L. As with the untransformed statistics, SZ was

more widely distributed with the filtered data and the dis-

tribution of KZ was shifted negative by filtering.

K and S can be combined to give a single measure of

normality. Two common approaches of this kind are the

Jarque–Bera statistic (J) and D’Agostino’s K-squared sta-

tistic (we use A instead of the usual K2 to avoid confusion).

In both cases a value of zero indicates normality. With both

J and A scatter did not change with L. With unfiltered data

this scatter was centered around zero as may be expected.

However, filtering caused both J and A to increase with L.

Statistics of DSPs from Simulated Data

With the statistics of noise established we could then

compare this with the statistics of DSPs generated by CPD.

We first did this with simulated data, not because this was

required as a prerequisite to analyzing real data, but rather

because simulation could test our analysis over a greater

range of inputs—SPs of different length, amplitude and

sequence—than might occur in a real data set. The same

noise series as used before (patch or computer generated)

were added to an idealized sequence of SPs of random

length and amplitude in an entirely random sequence. (An

example of simulated data is shown in Fig. 6a) The series

were then low pass filtered, various CPD algorithms were

applied and the statistics of the DSPs calculated. Because

the statistics of pure noise (see above) suggested that

excessive filtering introduced nonnormality we performed

CPD on the filtered series, but used the unfiltered series to

calculate each DSP’s statistics. The same statistics were

plotted as for the analysis of noise in Fig. 2.

We began by assessing two rather artificial CPDs, artifi-

cial in the sense that they were provided with the idealized

sequence of SPs. The first, the infinitely good CPD, used the

idealized sequence to detect all CPs perfectly—i.e., it pro-

duced only DCP(t) and DSP(t). The second, the finitely bad

CPD, instead would only detect only every nth CP, n being a

random number between one and four. In this way it pro-

duced a mix of DCP(t), DSP(f-) and DSP(t), but not

DCP(f?) or DSP(f?). The infinitely good CPD produced

distributions the same as for noise, as might be expected

(Fig. 3, gray points). With the finitely bad CPD, the scatter of

S, KE, SZ and KZ increased with L (Fig. 3, black points). Also

J and A increased with L. This can be explained by the fact

that as the number of CPs missed increases both the length of

the DSP will increase and its nonnormality.

Given the dispersion of S, KE, SZ and KZ with the finitely

bad CPD, it was thought that it might be useful to plot KZ

against SZ. Such plots (Fig. 4) showed a very characteristic

distribution for the finitely bad CPD, rather like a swooping

bird with its head at the origin, two wings extending into

positive KZ and a downwardly extended tail into negative

KZ. When the DSP(f-) and DSP(t) were distinguished

(Fig. 4, bottom two panels) it could be seen that the

DSP(t) were clustered around the origin, as might be

expected, but that there were a number of DSP(f-) also

around the origin that would not be distinguished from the

DSP(t) by a simple threshold. These would occur where the

CP(f-) was small enough that the DSP(f-) distribution

appeared normal. For the infinitely good CPD all DSP were

centered around the origin as would be expected (Fig. 4,

gray points in top four panels).

The shape of the KZ(SZ) distribution can be explained

quite simply (Fig. 5a). The tips of the wings consist of

DSP(f-) where one of the SPs is very short in length rel-

ative to the DSP—i.e., a short deflection. This gives a large

tail to the DSP distribution, and therefore a large kurtosis.

The fact that one tail is increased, also causes skew to be

either negative (downward deflection, left wing) or positive

(upward deflection, right wing). The tail of the bird consists

of DSP(f-) with two SPs of near the same length so that

skew is not too extreme. With the two SPs close in

amplitude (i.e., a small CP(f-)) the DSP(f-)’s distribution

will appear like a fat (large central bulge) bell, hence the

negative kurtosis. At larger amplitude differences the effect

on kurtosis is not so obvious as the DSP distribution

becomes bimodal. Therefore, we simulated a DSP(f-) of

fixed length with two SPs, the amplitude and length dif-

ference of which varied systematically. The KZ(SZ) plot of

this data (Fig. 5b) confirmed our interpretation of the wings

and tail and showed that for the tail KZ decreases almost

infinitely with an increase in amplitude difference.

In addition to the artificial CPDs (infinitely good and

finitely bad) we assessed three CPDs commonly used for

real single molecule data—derivative, Welch’s t-test and

Cochrane’s test. Welch’s t-test appeared overly sensitive as

could be seen from the low signal to noise ratio of its CPD

signal (Fig. 6c). As a result it broke the SPs up into many

short DSP(f?) and produced very few DSP(f-) (Fig. 6c,

Table 1). Cochrane’s test had a CPD signal with very good

signal to noise ratio (Fig. 6d) so there were very few

DSP(f?) (Table 1). However, there were a substantial

number of DSP(f-) (Table 1) and these were not distin-

guishable from DSP(t) in KZ(SZ) plots, suggesting that the

CP(f-) were small (Fig. 6d). Similar to Cochrane’s test,

the derivative had a fairly high signal-to-noise ratio

(though not as good; Fig. 6b) and so again had few
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DSP(f?) (Table 1). It had a similar percentage of DSP(f-)

to Cochrane’s (Table 1) and to a certain extent these were

more discernible in KZ(SZ) plots (Fig. 6b).

Statistics of DSPs from Real Data

The aim of the previous analysis of noise and simulated

data was to define what the statistics can and cannot

show and how best to apply them. We could then

confidently apply the statistics to real data where we had

no idealization to hand. One particular set of real data

we were interested in were some patch-clamp recording

of single maxi channels. These are large conductance

ion channels (hence the name) found in a diverse range

of cell types (Parsons et al. 2012; Sabirov and Okada

2009). They have a complex subconductance behavior,

there is no obvious model for visual assessment of CPD

fitting, making them perfect for our statistical approach.

As for the simulated data (Fig. 6), Welch’s t-test pro-

duced many short DSP compared to the derivative and

Cochrane’s test (Fig. 7). However, unlike the simulated

data, the DSP statistic distributions (whatever the CPD)

were much more like those from the finitely bad CPD.

D’Agostino’s K-squared statistic increased with length

(compare Fig. 6 to Fig. 3) and the KZ(SZ) plots had

definite wings (Fig. 7).

It may be noticed that in the simulated data analyzed by

finitely bad CPD (Figs. 4, 5b), the KZ(SZ) tail is compa-

rable in extent to the wings, whereas with real data ana-

lyzed by nonartificial CPD (Fig. 7) the wings and tail are of

comparable length. There is a simple explanation for this.

A nonartificial CPD is extra prone to nondetection of short

deflections (wing errors) due to the finite window length of

the detector, in comparison to longer deflections (tail

errors) of the same amplitude. Thus, the wings are bigger

than the tail. In comparison the finitely bad CPD does not

log L (s) log L (s) log L (s) log L (s)

log L (s) log L (s) log L (s) log L (s)

log L (s) log L (s) log L (s) log L (s)

SS Z SS

Z

K
E

K
Z K

Z

lo
g 

l

J

og
A
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K
E

lo
g 

l

J

og
A

Fig. 3 Performance of the infinitely good CPD and finitely bad CPD

with simulated SPs. 4010 SPs of random length and amplitude were

simulated and then added to either a in silico simulated standard

normal white noise (4.5 kHz digital low pass) or b noise recorded

from an inside–out patch without ion channel activity (10 kHz

sampling frequency, 5 kHz amplifier low pass). Scatter plots of DSP

statistic as a function of segment length (L). Gray points infinitely

good CPD; Black points finitely bad CPD
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distinguish between short and long deflections, so wings

and tail are of similar extent.

Discussion

Assumption of Normal Noise

It was surprising to us that filtering degraded the normality

of noise. We had no expectation that the distribution of

noise would be anything other than Gaussian. That this

seems to be a common assumption is reflected by three

facts. First, this is often stated as an assumption (Past-

ushenko and Schindler 1997; Schultze and Draber 1993).

Second, the simulations used to test CPDs have often

(though probably not in the majority) used unfiltered

Gaussian white noise (Moghaddamjoo 1988; Pastushenko

and Schindler 1997; Schultze and Draber 1993). Third,

many CPDs are parametric—that is, they are based on the

assumption of a particular distribution, in this case
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Fig. 4 Performance of the

infinitely good CPD and finitely

bad CPD with simulated SPs.

As in Fig. 3, 4010 SPs of

random length and amplitude

were simulated and then added

to either a in silico simulated

standard normal white noise

(4.5 kHz digital low pass) or

b noise recorded from an

inside–out patch without ion

channel activity (10 kHz

sampling frequency, 5 kHz

amplifier low pass). Scatter

plots of DSP normalized

kurtosis (KZ) as a function of

normalized skew (SZ). Upper
four panels performance of

infinitely good against finitely

bad CPD. Gray points infinitely

good CPD. Black points finitely

bad CPD. Contours indicate log

of D’Agostino–Pearson

omnibus statistic. Lower two
panels DSP designation with

finitely bad CPD. Gray points
DSP(f-); black points DSP(t)
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Gaussian. Although the cumulative sum can be used

directly as a CPD signal, most commonly it is put into the

probabilistic form of a likelihood ratio test based on

Gaussian distributions (Basseville 1988). Also both

Welch’s t-test and Cochrane’s test assume a Gaussian dis-

tribution. This perhaps explains an observation of Gross and

colleagues (Carter et al. 2008) that Welch’s t-test performed

variably depending on the filtering of the data, in compar-

ison to other nonparametric CPDs they examined.

There are a multitude of examples of ‘‘non-Gaussian

noise’’ in electronics, optics, acoustics, communication and

other realms of applied physics. Also there is significant

recognition of nonnormal noise in the field of digital signal

processing (Kassam and Thomas 1988; Webster 1993). There

are a number of possible causes for nonnormality of noise.

Firstly step changes in amplitude, what we regard here as

‘‘signal,’’ is called ‘‘impulsive’’ noise in the fields of elec-

tronics and communication. This is a rather obvious source of

nonnormality, causing a lengthening of tails when the

impulses are short or a bimodal distribution when they are

longer (Fig. 5). It is the basis of our assessment of DSPs.

However, there are two less obvious other sources of non-

normality. The assumption of Gaussian noise has its mathe-

matical basis in the central limit theorem. Here each noise

sample is assumed to represent the average of a large number

of random processes. For example in a patch-clamp recording,

different components of the amplifier’s circuits, electromag-

netic radiation, movement of the patch and thermal fluctua-

tions of the channel itself. According to the central limit

theorem if these processes all have the same distribution, or in

some cases just the same variance, then their average (i.e., the

measured noise) will have a normal distribution. However,

this may not be the case. As was stated by Webster (1993), this

condition (identical distribution or same variance) is not likely

to be met in a natural environment. The second, less obvious

cause of nonnormality, as we found here, is filtering. That

filtering of white noise (that is uncorrelated noise with a flat

frequency spectrum) will color that noise (make it correlated

with a nonflat frequency spectrum), seems to be a well

appreciated fact. However, it seems to be less well appreciated

that filtering of Gaussian white noise will also induce non-

normality. This is perhaps because of the relative sparsity and

technical nature of the literature and that there is no simple

relation between filter and distribution of output (Rice 1945;

Webster 1994; Wolff 1967).

DSP(f?), DSP(f-) and Filtering Versus Refinement

By design our method does not detect DSP(f?). These will

increase in CPDs with a low CPD signal to noise ratio

(Fig. 6, Table 1). Therefore, much can be done by just

observing the CPD signal and selecting a CPD with a the

highest signal to noise ratio. However, there is probably no

CPD, which can completely avoid DCP(f?) and to ‘‘solve’’

the problem a more thorough analysis will be needed of

what causes DCP(f?) in individual CPD.

Where the CP(f-) is small enough in amplitude, the

DSP(f-) can be undistinguishable from a DCP(t) based on

the statistical measures of normality we have used (Figs. 4,

6). It may be possible that a more sensitive test of normality

could identify these DSP(f-). Sensitivity might be increased

with a parametric test, i.e., based on comparison to an actual

KZ
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K
Z

SZ
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f = 0.01 f = 0.99

f

a

Fig. 5 Interpretation of KZ(SZ) plots. a Simulation. To simulate a

DSP, a thousand samples were taken from noise recorded from an

inside–out patch without ion channel activity (10 kHz sampling

frequency, 5 kHz amplifier low pass). To simulate a DSP(f-) a CP

was added a fraction of time (f) into the DSP with a particular

increase in amplitude (a). In the KZ(SZ) plot each contour line

represents a particular CP amplitude (increasing from 1 to 10, inner to

outer) with the fraction increasing along the line (arrows).

b Schematic. The two limbs at positive kurtosis represent DSP(f-)

with short deflections (relative to the length of the DSP). This

deflection increases the length of either the left tail of the DSP’s

distribution (negative deflection, negative skew limb) or right tail

(positive deflection, positive skew limb) and so increases kurtosis (the

DSP is leptokurtic). As the size of the deflection decreases, both skew

and kurtosis decrease at the same rate. The bough at negative kurtosis

represent DSP(f-) with a small amplitude CP(f-). This causes a fat

(platykurtic) DSP distribution
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Gaussian distribution rather than some value that just indi-

cates normality, like skew and kurtosis. There are several

parametric tests of normality based on binning the data so its

distribution can be compared directly to a normal (e.g.,

Pearson’s v2 test, the Kolmogorov–Smirnov test, Cramér–

von Mises statistic). Binning may limit their applicability to

short DSP, but it is a direction worth exploring.

Once DSP(f-) are identified there is then the question of

what to do with them. One approach is to discard them from

further analysis. However, this could leave a large gap,

especially as DSP(f-) tend to be long (Fig. 3). A better

approach than this filtering of DSP would be to take each

DSP(f-) and try to identify the CP(f-) within it by a CPD

that is more sensitive than the CPD used to first segment the
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Fig. 6 Performance of nonartificial CPDs with simulated SPs. As in

Figs. 3 and 4, 4010 SPs of random length and amplitude were

simulated and then added to in silico simulated standard normal white

noise. The series was then digitally low pass filtered twice (4.5 kHz

and 250 Hz cutoff) the first to simulate filtering by a recording

instrument. CPD was performed on the doubly filtered data, but DSP

statistics were calculated from the singly filtered series. a Part of the

simulated series with (gray) and without (black) doubly filtered noise.

b–d CPD signal and DSP statistics for derivative CPD (b), Welch’s

t-test CPD (c) and Cochrane’s test CPD (d). In statistics plots, black
points are DSP(f-) and gray points all other DSP
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series—either a different CPD altogether or the same CPD

but with adjusted parameters. Again this CPD would have to

be not too sensitive at the risk of multiplying DSP(f?).

Previous Distribution Techniques

A study by Hansen and colleagues came very close to the

method we have presented here (Schroder et al. 2004). Their

initial reasoning was exactly the same, that SP distributions

should be Gaussian, but DSPs may not be Gaussian if CPs are

missed. However, their approach was somewhat different.

Instead of looking at the distributions of individual DSPs they

looked at the distributions of levels, that is sets of DSPs with

the same amplitude (determined in their case with cumulative

sum CPD algorithms). There are (usually) far fewer levels in a

series, than DSP; thus, the level distributions could be assessed

by directly graphing them and fitting with Gaussian functions.

Their method might be described as aggregated (in respect of

the DSPs) as opposed to our unaggregated method. The un-

aggregated approach has three advantages in this respect.

From a modeling point of view it does not assume a model of

DSPs aggregated into levels. This may be an appropriate

position to take when dealing with apparently complex

kinetics such as for the maxi channel or from a more theo-

retical stance (Frauenfelder et al. 1988). More practically,

most CPDs do not aggregate DSPs into levels. Cumulative

sum CPDs only do this because the level amplitudes are input

parameters to the algorithm. This makes the unaggregated

approach a better fit with most CPDs. Lastly once a level

distribution is judged as nonnormal, it will probably not be

possible to filter out the ‘‘wrong’’ samples. If a nonnormal

level distribution can be thought of as the sum of a normal

distribution of ‘‘correct’’ samples and a nonnormal distribu-

tion of wrong samples (i.e., a mixture model) than if those two

distribution overlap there is no way of assigning a particular

sample in that overlap to a particular distribution. The only

option is to start over CPD with different parameters.

Another precedent for our method has been the application

of beta distributions to single ion channel data (Fitzhugh 1983;

Yellen 1984). These can be used to model sample distributions

during flicker—i.e., a two level series with time spent in one

level very short compared to the other. This is the situation

illustrated in Fig. 5b at the wing tips of the KZ(SZ) plot. The

short transitions to the second level causes a long tail in the

overall distribution, most of which reflects samples of the first

level. By mathematical analysis it was shown that such a

distribution should be a beta distribution (Fitzhugh 1983) and

that an analysis based on this could be used to calculate kinetic

parameters that might be inaccurately determined by other

methods, due to filtering of short transitions. The moments of

the beta distribution, including skew and kurtosis, have been

derived and so it might be an interesting direction to make a

analytical comparison with our method.

A Practical Guide to Statistical Assessment

Test Assumptions

Our assessment method is based on assumption of a model

of the data where

(i) The data can be described entirely with CPs, which are

near instantaneous, and SPs, which are stationary in the

strict sense—i.e., the distribution is time invariant.

(ii) The SP distribution is Gaussian.

Therefore, the first priority is to test whether these

assumptions hold. The first assumption should be tested first

by visual inspection of the data. Any obvious non-step-like

changes in current? Such changes are common enough in ion

channel recordings. ‘‘Flicker’’ may result from fast bandwidth

limited between multiple conductance states. Slower changes

may result from ‘‘diffusional’’ changes in occupancy of states

with similar conductance (Millhauser et al. 1988; Vaccaro

2007) or rearrangements of the patch membrane (Chui and

Fyles 2012; Fyles et al. 1998). If such changes are common, it

may well do to exclude this data from analysis. The second

assumption requires two consecutive tests:

(i) Test channel-free patch recordings, which have not

been digitally filtered, for normality.

(ii) It has been established that channels contribute their

own ‘‘noise’’ to SPs through tiny movements of the

channel, tiny variations in their ion flux or current due

to movement of charged residues. I put ‘‘noise’’ in

quotation marks because of course there may be a

continuum between noise and bona fide CP—it could

be seen as a matter of definition. However, such

‘‘open channel noise’’ was extensively studied by

Sigworth and colleagues in a classic series of papers

in the Biophysical Journal (Crouzy and Sigworth

Table 1 Properties of DSPs from different CPDs with simulated

dataa

CPD N t (%) f- (%) f? (%) f-, f? (%)

Infinitely good 2,642 100.0 0.0 0.0 0.0

Finitely bad 1,274 24.0 76.0 0.0 0.0

Derivative 3,407 29.9 26.8 59.6 16.3

Welch’s t-statistic 27,806 2.0 0.4 97.9 0.3

Cochrane’s

statistic

1,963 73.9 24.1 3.8 1.8

CPD change point detector
a All CPDs were given the same simulated data. Derivative: h = 7,

d = 2 threshold (dy/dt) = 0.5. Welch’s t-statistic: w = 200, threshold

(p) = 0.95; Cochrane’s statistic: w = 100, r2 = 0.2, threshold

(p) = 0.95
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1993; Heinemann and Sigworth 1988, 1990, 1991;

Sigworth 1985, 1986; Sigworth et al. 1987). In one of

these, they looked at noise distributions (Heinemann

and Sigworth 1991) and showed that noise could be

non-Gaussian under certain ionic conditions. There-

fore, even if instrumental noise has been established

as Gaussian (i), SPs may still be nonnormal. Probably

this can only be tested by plotting KZ(SZ) and if no

DSPs appear normal, then perhaps this is more than

just a case of poor CPD and the ion channel

contributes non-Gaussian noise.

CPD and Statistics

Once the assumptions in (i) are tested, CPD and statistical

analysis should be carried out with the following guidance.

(i) CPD can be performed on filtered data, but DSP

statistics should be calculated from the unfiltered data.

(ii) Only nonparametric CPDs should be used with

filtered data.

(iii) The choice of specific CPD and its parameters

should be informed either by considerations of the
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Fig. 7 Performance of CPDs with a patch-clamp recording of a maxi

channel. The recording was 6 min long. It was low pass filtered by the

amplifier at 5 kHz and low pass filtered digitally at 250 Hz. CPD was

performed on the doubly filtered data, but DSP statistics were

calculated from the singly filtered series. a Part of the doubly filtered

series. b–d CPD signal and DSP statistics for derivative CPD (b),
Welch’s t-test CPD (c) and Cochrane’s test CPD (d)
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raw data (e.g., faster kinetics would recommend a

smaller window or a derivative CPD) or empirically

by comparison of DSPs from several CPD. Use

whatever CPD gives the least presumed DSP(f-)

(nonnormal DSP) as a proportion of all DSP.

What to Do with the Statistics

Once CPD has been performed and KZ(SZ) plots made, the

proportion of presumed DSP(f-) and their type (wing or

tail) can be assessed. Three things then seem possible with

presumed DSP(f-).

(i) If they are wing DSP(f-), suggesting fast deflections,

the window size might be reduced.

(ii) Exclude all of them from further analysis.

(iii) Try to identify the CP(f-) in them by more sensitive

analysis or by reapplying CPD with more sensitive

parameters.

We haven’t looked at these possibilities. It is probably

rather heuristic and would require a much more detailed

analysis of different CPD. Here we have only attempted to

outline a general method of assessment.
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